

Design Your Own Geometrical Chess Set

Laura Engelscharmüllner & Daniel Deixler

RELATED SUBJECTS	GRADE RECOMMENDATIONS	TOTAL ACTIVITY TIME	LEARNING OBJECTIVES DURING THE LESSON SUBJECT-SPECIFIC COMPETENCIES	LEARNING OBJECTIVES AFTER THE LESSON
Mathematics, Handicraft, Digital Literacy	Grades 7-10 (Ages 13-16)	270 minutes (3 double lessons)	 Understand basic geometry of chess figures. Use digital modeling software effectively (Tinkercad). Develop crafting skills by creating a physical chessboard. 	 Enhanced spatial reasoning, logical thinking, and creativity. Practical experience with digital fabrication and 3D printing technology.

OSTRAVSKÁ

UNIVERZITA

Students design and 3D print custom chess sets, simultaneously crafting chessboards to practically engage with geometry, technology, and handicraft skills.

- Basic geometry (shapes, volumes, spatial reasoning).
- Introductory skills in digital technology and software usage.

3D Modelling and 3D Printing Integration

3D MODELING TOOLS AND SOFTWARE:	Tinkercad, Craftware Pro
3D PRINTING PROCESS:	Students will design chess figures in Tinkercad, export as STL files, prepare in Craftware Pro, and print using a 3D printer.
LEARNING OBJECTIVES RELATED TO 3D MODELING AND PRINTING:	- Accurate digital modeling. - Practical experience in 3D printing preparation and execution.

UNIVERSITY OF JYVÄSKYLÄ finnish institute for educational research

STEAM Elements

STEAM SUBJECTS	SCIENCE	TECHNOLOGY	ENGINEERING	ARTS	MATHEMATICS
SHORT INTRODUCTIO N TO RELATED SUBJECT ELEMENTS	Understanding material properties and structural stability of printed objects.	Digital modeling and using 3D printing software.	Designing, preparing, and executing 3D prints.	Aesthetic design of chess figures and chessboard.	Geometric shapes, spatial reasoning, and measurements.

Syllabus

LESS ONS	SUBJECTS	TOPIC OF THE UNIT	LEARNING OBJECTIVES DURING THE LESSON: SUBJECT-SPECIFIC COMPETENCIES	LEARNING OBJECTIVES AFTER THE LESSON: STEAM COMPETENCIES
1	Mathematics, Digital Literacy	Introduction to Chess Geometry and Figures	 Exploring the link between chess pieces and geometric forms Introduction to 3D modeling basics - Understand geometric properties (e.g., symmetry, shapes, volumes) of chess figures Apply knowledge of 2D and 3D geometry to conceptualize a design Gain basic skills in navigating and using Tinkercad for modeling 	 Develop spatial reasoning through geometry-driven design Strengthen logical thinking through the rules and structure of chess Build foundational digital skills applicable across design and tech platforms
2	Mathematics, Technology	 Digital Modeling and 3D Printing Preparation Designing digital chess figures in Tinkercad Preparing files for 3D printing with slicing software 	 Create accurate 3D chess models using geometric tools and modeling techniques Apply mathematical concepts (proportion, symmetry, transformation) in modeling Learn the basics of 3D slicing software and export processes 	 Acquire technical skills in 3D design and printing workflow Experience the iterative design process, adjusting models for functionality and printability Understand the link between mathematical design and engineering execution

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH

JOHANNES KEPLER UNIVERSITÄT LINZ

Co-funded by the European Union

3	Handicraft, Arts	 Crafting the Chessboard and Final Presentation Building and decorating a physical chessboard Reflecting on the full project Chess gameplay using printed pieces 	•	 Develop manual crafting and measurement skills through construction of a chessboard Practice artistic expression through painting and customizing designs Engage in reflective and strategic thinking through chess gameplay and discussion 	 Integrate creative and engineering practices to present a complete STEAM project Apply learned skills in geometry, design, and fabrication in a hands-on, collaborative setting Develop presentation and peer feedback skills through class exhibition and gameplay experience

Instructional Plan by Lesson

(Copy this section as many times as needed for each lesson)

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (10 MINUTES)	- Present the overall project	- Presentation slides	- Understand the
	scope: designing a custom chess	Physical chess set or	connection between chess
	set	images	and geometry
	Brief history of chess and the		Recognize geometric
	geometry behind chess figures		features in existing chess
	Discuss how shapes represent		pieces
	function (e.g., bishop's cut, rook's		
	tower)		
LEARNING ACTIVITIES (25	□ Geometry activity: identify basic	Rulers, geometry templates	Analyze the composition
minutes)	3D shapes in chess figures		of geometric objects
	Group task: sketch one chess		Apply geometric reasoning
	piece using only geometric shapes		in real-world design tasks
	Class discussion: what		
	challenges might arise when		
	modeling these pieces digitally?		
	Introduction to Tipkersed:		
3D MODELLING ACTIVITIES	Introduction to Inkercad:	Computers Tinkereed (enline)	- Use basic CAD tools to
(35 minutes)		\Box Theorem tutorial file	
	datan by stop		
	siep-by-siep		SD space

	 Students begin rough modeling of a second piece (their choice) 		
3D PRINTING ACTIVITIES (10 minutes)	 Teacher shows STL file export process Live demonstration of importing file into slicing software (Craftware or Cura) Show preview of a print job 	 Sample STL files 3D printer or slicing preview on projector Craftware or Cura software 	- Understand the pipeline from design to print Learn basic file handling and slicing concepts
WRAP-UP & EVALUATION (10 MINUTES)	 Recap what shapes belong to which piece Q&A: What worked in Tinkercad? What was confusing? Exit ticket: name 3 geometric solids and one use in your chess piece design 	Discussion prompts on board	 Reflect on first experiences with digital modeling Solidify geometry vocabulary and Tinkercad basics

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (SOFTWARE, HARDWARE)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	- Review last lesson's models	Student models	 Set clear goal for modeling completion

	Introduce today's goal: design, finalize, and prepare full chess piece set for printing	 Tinkercad and slicing software screenshots 	 Understand full design-to- print workflow
LEARNING ACTIVITIES (15 MINUTES)	 Peer review: Students exchange models and give feedback (accuracy, creativity) Teacher mini-demo: How to check if a model is "watertight" and printable Discussion: Scaling, symmetry, and piece proportion 	 Teacher sample models (correct/incorrect) 	 Evaluate 3D designs with an engineering mindset Use peer feedback constructively
3D MODELLING ACTIVITIES (45 minutes)	 Students refine existing models or create new pieces (goal: complete at least 3–4 distinct pieces) Optional: Advanced modeling tips (chamfering, group/un-group, holes) Save STL files for printing 	 Computers Tinkercad Teacher modeling help sheet 	 Use advanced modeling techniques Finalize printable designs using CAD tools
3D PRINTING ACTIVITIES (15 MINUTES)	 Students practice slicing their STL files with teacher guidance Adjust orientation, infill, supports Start printing one student piece if time allows 	 Craftware, Cura, or PrusaSlicer 3D printer Sample print queue list 	- Learn slicing software basics Prepare files independently for printing

WRAP-UP & EVALUATION (10 minutes)	 Group discussion: What did you change and why? Submit STL files and peer feedback forms Reflection prompt: What makes a model both creative and functional? 	 Submission folder Printed or digital reflection sheet 	 - Reflect on modeling process and peer input Assess readiness for 3D printing

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (10 MINUTES)	- Present today's challenge: design and decorate the chessboard Show aesthetic examples (minimalist, ornate, geometric styles)	 Sample boards (images or physical) Color palettes and design references 	 Inspire creative planning and craftsmanship Link board aesthetics to game strategy
LEARNING ACTIVITIES (40 MINUTES)	 Students measure and draw out the chessboard Cut or prepare materials (wood, cardboard, foamboard) Begin painting or decorating squares 	- Rulers, cutters, paint, markers Chessboard templates	 Apply accurate measurements and precision Practice planning and execution in physical design

3D MODELLING ACTIVITIES	-	-	-
(X MINUTES)			
3D PRINTING ACTIVITIES (20 minutes)	 Continue printing chess pieces (rotate through students) Students observe the printing 	 3D printer Previously sliced files Troubleshooting checklist 	 Gain insight into printing process and quality control Learn from success or failure of their models
	 Decess and troubleshoot if needed Compare printed pieces to digital models 		
WRAP-UP & EVALUATION (20	Final chessboard and piece	Photo station or display	Reflect on full STEAM
MINUTES)	 display Play chess with their own sets (if all pieces ready) Group reflection and feedback: "What was your favorite part of the process?" "What skill did you improve the most?" 	wall Chess game setup 	 experience Practice strategic thinking and presentation skills Celebrate craftsmanship and creativity

Evaluation Plan by Lesson

LES SON	EVALUATION CRITERIA	EVAL	LUATION METHOD	3D MODELING AND PRINTING ASSESSMENT:		
		OSTRAVSKÁ UNIVERZITA	UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH	NNES KEPLER RESITÄT LINZ	UNIVERSITÉ DU LUXEMBOURG	COMENIUS UNIVERSITY BRATISLAVA

Co-funded by the European Union

I	Does the student understand how geometric forms relate to chess piece design? Can the student identify and describe key shapes used in 3D modeling?	 Concept mapping: students draw and label shapes within chess pieces Observation during sketching and geometry activities Exit ticket with terminology questions 	 Accuracy in identifying basic shapes (sphere, cone, cylinder) within chess piece sketches Quality of first Tinkercad model (e.g., basic pawn), evaluated using a simple rubric (shape use, symmetry, completeness) Ability to group and align shapes properly in the 3D workspace
2	Did the student create accurate and functional 3D models of multiple chess pieces? Can the student prepare STL files correctly for slicing and printing?	 Teacher observation during Tinkercad modeling session Peer review using a checklist (creativity, symmetry, recognizability) Submission of STL files and reflection on design changes 	 Use of consistent scale, symmetry, and correct shape combinations Successful export of watertight STL files with proper grouping Completion of slicing in software with correct print orientation, infill, and support settings Initial test prints evaluated on form accuracy and structural stability
3	Is the student able to present their chess set with confidence, showing both craftsmanship and understanding of design choices? Did the student engage in reflection and evaluation of their full STEAM process?	 Observation of board construction and painting Self-evaluation and peer feedback on the finished set Group discussion and/or reflection sheet submission 	 Final printed chess pieces evaluated for: Print quality (layer adhesion, stability) Design fidelity (match to digital model) Aesthetic quality (symmetry, creativity) Overall chess set (board + pieces) evaluated using a rubric for completeness, usability, and STEAM integration

	□ Optional: video or photo presentation of
	the complete project

Additional Resources

NOTES:

ACTIVITY SHEETS TO BE LINKED:

EVALUATION MATERIALS TO BE LINKED:

REFERENCES / SUPPORTING MATERIALS TO BE LINKED:

TIME PLAN

Lesson I: Instructional Plan

TEACHING & LEARNING ACTIVITIES MATERIALS (SOFTWARE, HARDWARE) LEARNING OBJECTIVES

Introduction (5 min)
Learning Activities (15 min)
3D Modelling Activities (15 min)
3D Printing Activities (5 min)
Wrap-up & Evaluation (5 min)

Present lesson goals and engage students in initial discussion. Interactive group discussions, practical tasks. Students model chess figures using Tinkercad software. Brief demonstration of 3D printing process. Summary of lesson, Q&A, brief evaluations.

Co-funded by the European Union

Clear understanding of objectives and expectations. Engage students in active learning and collaboration. Gain hands-on experience with digital modeling. Basic understanding of 3D printing technology. Confirm comprehension and clarify doubts.

LEARNING OBJECTIVES

Clear understanding of objectives and expectations. Engage students in active learning and collaboration. Gain hands-on experience with digital modeling. Basic understanding of 3D printing technology. Confirm comprehension and clarify doubts.

LEARNING OBJECTIVES

Clear understanding of objectives and expectations.

MATERIALS (SOFTWARE, HARDWARE) Presentation slides, visual aids

JOHANNES KEPLER IINIVERSITÄT I IN7

COMENIUS UNIVERSITY BRATISLAVA

TIME PLAN

Introduction (5 min)

Learning Activities (15 min)

3D Modelling Activities (15 min)

3D Printing Activities (5 min)

Wrap-up & Evaluation (5 min)

TIME PLAN

Introduction (5 min)

TEACHING & LEARNING ACTIVITIES Present lesson goals and engage students in initial discussion.

LESSON 2: INSTRUCTIONAL PLAN

Present lesson goals and engage

TEACHING & LEARNING

students in initial discussion.

Interactive group discussions,

Students model chess figures

ACTIVITIES

practical tasks.

MATERIALS (SOFTWARE, HARDWARE) Presentation slides, visual aids Worksheets, chess pieces examples Computers, Tinkercad 3D printer, sample objects

Presentation slides, visual aids

Worksheets, chess pieces

3D printer, sample objects

Discussion prompts, evaluation

Computers, Tinkercad

examples

sheets

Discussion prompts, evaluation sheets

LESSON 3: INSTRUCTIONAL PLAN

Co-funded by the European Union

Learning Activities (15 min)	Interactive group discussions, practical tasks.	Worksheets, chess pieces examples	Engage students in active learning and collaboration.
3D Modelling Activities (15 min)	Students model chess figures using Tinkercad software.	Computers, Tinkercad	Gain hands-on experience with digital modeling.
3D Printing Activities (5 min)	Brief demonstration of 3D printing process.	3D printer, sample objects	Basic understanding of 3D printing technology.
Wrap-up & Evaluation (5 min)	Summary of lesson, Q&A, brief evaluations.	Discussion prompts, evaluation sheets	Confirm comprehension and clarify doubts.
	Lesson 4: Inste	RUCTIONAL PLAN	
TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (SOFTWARE, HARDWARE)	LEARNING OBJECTIVES
Introduction (5 min)	Present lesson goals and engage students in initial discussion.	Presentation slides, visual aids	Clear understanding of objectives and expectations.
Learning Activities (15 min)	Interactive group discussions, practical tasks.	Worksheets, chess pieces examples	Engage students in active learning and collaboration.
3D Modelling Activities (15 min)	Students model chess figures using Tinkercad software.	Computers, Tinkercad	Gain hands-on experience with digital modeling.
3D Printing Activities (5 min)	Brief demonstration of 3D printing process.	3D printer, sample objects	Basic understanding of 3D printing technology.
Wrap-up & Evaluation (5 min)	Summary of lesson, Q&A, brief evaluations.	Discussion prompts, evaluation sheets	Confirm comprehension and clarify doubts.
	Lesson 5: Inste	RUCTIONAL PLAN	
TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (SOFTWARE, HARDWARE)	LEARNING OBJECTIVES
Introduction (5 min)	Present lesson goals and engage students in initial discussion.	Presentation slides, visual aids	Clear understanding of objectives and expectations.
Learning Activities (15 min)	Interactive group discussions,	Worksheets, chess pieces	Engage students in active learning

practical tasks.

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH

examples

JOHANNES KEPLER UNIVERSITÄT LINZ

and collaboration.

*	
*	- 🕺
**	*

Co-funded by the European Union

3D Modelling Activities (15 min)	Stude
3D Printing Activities (5 min)	Brief
Wrap-up & Evaluation (5 min)	Sumr evalu

ents model chess figures Tinkercad software. demonstration of 3D printing ess. mary of lesson, Q&A, brief uations.

Computers, Tinkercad	(
• •	С
3D printer, sample objects	E
	t
Discussion prompts, evaluation	C
sheets	с

Gain hands-on experience with digital modeling. Basic understanding of 3D printing technology. Confirm comprehension and clarify doubts.

COMENIUS UNIVERSITY BRATISLAVA