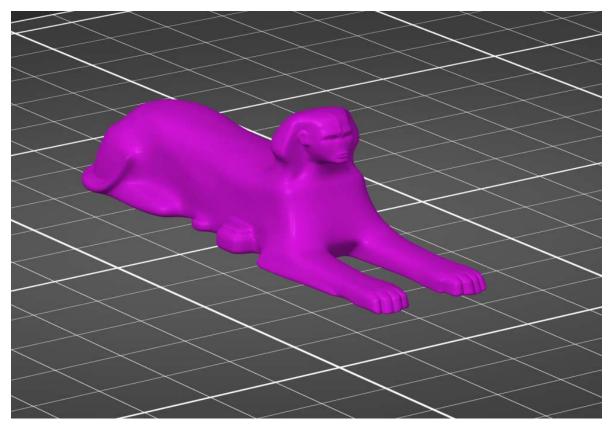


Modeling the Ancient Great Sphynx with 3D Printing

RELATED SUBJECTS	GRADE RECOMMENDATIONS	TOTAL ACTIVITY TIME	LEARNING OBJECTIVES DURING THE LESSON SUBJECT-SPECIFIC COMPETENCIES	LEARNING OBJECTIVES AFTER THE LESSON
History, Mathematics, Technology, Arts	Grades 6-8 (Ages 11-14)	135 minutes (3 lessons of 45 minutes each)	 Understand historical and cultural significance of the Great Sphinx. Calculate accurate dimensions for scale modeling. Learn and apply digital modeling skills using Tinkercad. 	 Strengthen historical knowledge, mathematical scaling techniques, and digital creation skills. Foster continuous interest in using technology creatively for educational purposes.



In this unit, students dive into ancient Egypt by digitally modeling and 3D printing a detailed miniature of the Great Sphinx. Through integrated history, mathematics, technology, and arts

activities, students enhance their understanding of ancient cultures and acquire practical digital fabrication skills.

- Basic historical knowledge about ancient Egypt, specifically the pyramids and the Sphinx.
- Fundamental skills in measurements, scales, and basic geometry.

3D Modelling and 3D Printing Integration

3D MODELING TOOLS AND SOFTWARE:	Tinkercad (digital modeling), Craftware Pro or Cura (slicing software)
3D PRINTING PROCESS:	Students design their digital models in Tinkercad, export as STL files, slice the models using Craftware Pro or Cura, and finally print them on a 3D printer using PLA filament.
LEARNING OBJECTIVES RELATED TO 3D MODELING AND PRINTING:	- Precision in digital modeling and scaling. - Practical understanding and hands-on experience with the 3D printing workflow.

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH

COMENIUS UNIVERSITY BRATISLAVA

STEAM Elements

STEAM SUBJECTS	SCIENCE	TECHNOLOGY	ENGINEERING	ARTS	MATHEMATICS
SHORT INTRODUCTIO N TO RELATED SUBJECT ELEMENTS	Exploring material properties and structural integrity in 3D printing.	Utilizing digital modeling and slicing software effectively.	Planning and executing precise digital-to-physical 3D printed models.	Creating aesthetically pleasing and historically accurate representations.	Applying measurements, geometric principles, and accurate scaling.

Syllabus

	Engineering	Presenting the Sphinx	shapes and tools in Tinkercad	basic engineering skills
3	Technology, Arts,	Modeling and	- Digitally model the Sphinx using basic	Develop 3D modeling and
2	Mathematics, Technology	From Monument to Model: Scaling and Design Planning Learn how to calculate scaled dimensions of the Sphinx and plan a digital model.	 Calculate and convert real-world dimensions into scaled proportions for modeling Use simple math operations (ratios, measurements) to prepare for 3D design Draft a basic plan or sketch of the model based on geometric interpretation 	 Apply math in a practical design scenario Strengthen numeracy through scale conversion Use technology as a tool for design planning
ONS 1	History, Mathematics	The Great Sphinx: History and Geometry Explore the origins and cultural significance of the Great Sphinx, and identify its geometric features.	COMPETENCIES Understand the historical and cultural significance of the Great Sphinx of Giza • Recognize and describe the basic geometric forms found in the Sphinx's structure • Begin basic scaling by estimating proportional relationships	 COMPETENCIES Connect historical knowledge with geometric thinking Develop foundational spatial reasoning through real-world cultural contexts Build cross-disciplinary thinking by linking history and math
LESS ONS	SUBJECTS	TOPIC OF THE UNIT	LEARNING OBJECTIVES DURING THE LESSON: SUBJECT-SPECIFIC	LEARNING OBJECTIVES AFTER THE LESSON: STEAM

Digitally model the Sphinx in Tinkercad and prepare for a class exhibition.	•	Prepare the model for printing by exporting and adjusting print settings Present the final model concept and reflect on the process	 Express creativity through aesthetic decisions in the digital design Communicate design ideas effectively and reflect on interdisciplinary learning
---	---	---	--

Instructional Plan by Lesson

(Copy this section as many times as needed for each lesson)

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (SOFTWARE, HARDWARE)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	Introduce the Sphinx with photos/videos. Ask: <i>"Why has the</i> <i>Sphinx fascinated people for</i> <i>centuries?"</i> and preview the unit goal.	 Slides or short video on Ancient Egypt Printed images of the Sphinx Whiteboard 	 Understand the cultural and historical importance of the Great Sphinx Spark student curiosity about ancient engineering
LEARNING ACTIVITIES (20 MINUTES)	 Mini lecture on the Sphinx (location, materials, mythology) Geometry analysis of the monument (base shape, symmetry, proportions) 	 Geometry reference handout Worksheets for sketching Rulers, pencils 	 Identify and analyze geometric shapes in historical architecture Develop geometric reasoning tied to historical context

	 Students sketch the Sphinx using basic geometric shapes 		
3D MODELLING ACTIVITIES (10 minutes)	Teacher demonstrates Tinkercad interface: basic shapes, movement, rotation. Students begin placing base shapes for the Sphinx.	 Computer/projector Tinkercad online Student laptops or desktops 	 Gain familiarity with digital modeling tools Begin rough layout of their model based on their sketch
3D PRINTING ACTIVITIES (X MINUTES)	-	-	-
WRAP-UP & EVALUATION (10 MINUTES)	 Students complete a reflection: "What part of the Sphinx was hardest to draw or model?" Share answers in pairs or groups 		 Reflect on the challenges of visual-to-digital translation Build confidence in modeling process

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	Recap previous lesson. Pose key question: <i>"If the Sphinx is</i> 73	- Sphinx dimensions visual Whiteboard with ratio example	- Connect real-world dimensions to mathematical scaling

LEARNING ACTIVITIES (20	 meters long, how big should our model be?" Students receive real Sphinx 		 Use ratio and scale to
MINUTES)	 dimensions and convert them into scale (e.g., 1:1000) Work in pairs to solve ratio problems Fill in modeling dimension planning sheet 	 Calculators or tablets 	 prepare accurate digital models Strengthen practical math skills in a design context
3D MODELLING ACTIVITIES (15 minutes)	Students return to Tinkercad and apply scaled measurements to their models (e.g., resizing base, aligning parts)	 Tinkercad Student computers 	 Apply scaling from worksheet to CAD environment Refine model accuracy with correct dimensions
3D PRINTING ACTIVITIES (X MINUTES)	-	-	-
WRAP-UP & EVALUATION (5 minutes)	 Students compare their model sizes Quick gallery walk (screen share or desk walk) to see how others applied scaling 	 Peer feedback sheet Teacher rubric (informal) 	 Reinforce visual-spatial awareness and accuracy Peer evaluation of model size and proportion

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (SOFTWARE, HARDWARE)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)			- Set intention and artistic
	Sphinx model and prepare it for		vision for the final model
	printing	Prompt questions for goal	
	Question: "What do you want your final model to show or represent?"	setting	
	Intal model to show of represent?		
LEARNING ACTIVITIES (10	Students plan final details: artistic	Finishing checklist	Evaluate and improve
MINUTES)	features, symmetry check,	Printed reference photos	digital work with a critical eye
	component positioning	of the Sphinx	Plan artistic and structural
	Quick checklist to guide their		enhancements
	finishing process		
3D MODELLING ACTIVITIES	Students complete their Tinkercad	□ - Tinkercad	□ - Finalize digital model with
(15 minutes)	model.	Student devices	full geometry and scaled
	Export STL files with teacher		dimensions
	assistance.		□ Learn file preparation
	Rename files and prepare them		workflow
	for slicing.		
3D PRINTING ACTIVITIES (10	Demonstrate slicing software	□ - 3D printer and slicer	□ - Understand slicing
MINUTES)	(e.g., Cura or Craftware).	Sample sliced files	process for 3D printing
	Students slice their files, choose		Prepare their model for
	print settings (scale, infill), and		successful physical fabrication
	preview the layer-by-layer print.		

WRAP-UP & EVALUATION (5	Students write or discuss: "What	- Evaluation sheet	- Reflect on
MINUTES)	did I learn about combining art,		interdisciplinary learning
	math, and tech?"		Recognize challenges and
	Optional: vote on class models for		triumphs in the design
	categories like "Most Precise",		process
	"Most Creative"		

Evaluation Plan by Lesson

LES SON I	EVALUATION CRITERIA Does the student understand the historical and cultural significance of the Great Sphinx? Can the student recognize and describe basic geometric shapes within the Sphinx structure?	 EVALUATION METHOD Concept map activity on Ancient Egypt and the Sphinx Group discussion and sketch-based worksheet Observation during geometry sketching and modeling prep 	 3D MODELING AND PRINTING ASSESSMENT: Evaluate sketches of the Sphinx using a checklist: Are basic geometric forms identified (cylinder, prism, pyramid)? Are features like paws, head, and base properly placed in the drawing? Review of initial Tinkercad layout: proper object placement and grouping of basic shapes
2	Did the student successfully calculate and apply correct scale measurements for modeling? Can the student transfer calculated dimensions to their digital model?	 Accuracy check of scale worksheets Observation of student work during modeling Peer review of initial scaled models using a quick evaluation checklist 	 Tinkercad model evaluated for: Application of proper scaling (matching the 1:x ratio from real- world measurements) Proportional relationships between components (e.g., body to head, base size) Correct use of alignment tools and uniform scaling across parts

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH JOHANNES KEPLER UNIVERSITÄT LINZ

Co-funded by the European Union

3	Is the student able to complete and present a digital 3D model that reflects scaled geometry and artistic interpretation? Can the student explain the modeling and printing process confidently?	 Observation of final modeling process Student presentation or written reflection explaining design choices Peer review of models and presentations 	 Final model is assessed for: Accuracy and completeness of structure Aesthetic details and creativity (e.g., facial features, stylized base) Model is export-ready: properly grouped, oriented for printing, no floating parts Sliced file preview reviewed for correctness (layer view, support generation, orientation)
---	--	--	--

Additional Resources

NOTES:

ACTIVITY SHEETS TO BE LINKED:

EVALUATION MATERIALS TO BE LINKED:

REFERENCES / SUPPORTING MATERIALS TO BE LINKED:

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH

COMENIUS UNIVERSITY BRATISLAVA