

Exploring Molecular Symmetry with Platonic Solids, GeoGebra and 3D Printing

RELATED SUBJECTS	GRADE RECOMMENDATIONS	TOTAL ACTIVITY TIME	LEARNING OBJECTIVES DURING THE LESSON SUBJECT-SPECIFIC COMPETENCIES	LEARNING OBJECTIVES AFTER THE LESSON
Mathematics, Science, Technology, Arts	Grades 10-12 (Ages 15-17)	5 lessons (45 mins x 5)	 Understand symmetry concepts and apply them to Platonic solids and molecular geometry. Gain proficiency in GeoGebra for digital 3D modeling. Represent scientific concepts creatively through artistic activities. 	 Apply symmetry understanding to predict molecular properties. Continue developing skills in digital modeling and artistic representation.

UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH

COMENIUS UNIVERSITY BRATISLAVA

TOPIC & PURPOSE:

This interdisciplinary unit connects mathematics, science, technology, and arts by exploring molecular symmetry using Platonic solids. Students engage in hands-on activities with GeoGebra and 3D printing to visually and creatively enhance their understanding.

ACTIVITY PRE-REQUISITES:

- Basic geometric understanding of polyhedra and symmetry.
- Introductory knowledge of GeoGebra.

3D Modelling and 3D Printing Integration

3D MODELING TOOLS AND SOFTWARE:	GeoGebra software.
3D PRINTING PROCESS:	Students design 3D structures using GeoGebra, export their models as STL files, and print using 3D printers.
LEARNING OBJECTIVES RELATED TO 3D MODELING AND PRINTING:	- Skills to accurately create 3D digital models. - Practical understanding of 3D printing technology and processes.

STEAM Elements

STEAM SUBJECTS	SCIENCE	TECHNOLOGY	ENGINEERING	ARTS	MATHEMATICS
SHORT INTRODUCTIO N TO RELATED SUBJECT ELEMENTS	Analysis and understanding of molecular symmetry and geometry.	Utilizing GeoGebra for digital 3D modeling.	Designing and constructing accurate 3D models.	Creating artistic representations of scientific concepts and symmetry.	Exploration of spatial geometry, symmetry, and Platonic solids.

Syllabus

LESS ONS	SUBJECTS	TOPIC OF THE UNIT	LEARNING OBJECTIVES DURING THE LESSON: SUBJECT-SPECIFIC COMPETENCIES	LEARNING OBJECTIVES AFTER THE LESSON: STEAM COMPETENCIES
1	Math, Science, Tech	Introduction to Symmetry	Identify symmetry properties, define	Recognize symmetry's role in
		and Platonic Solids	Platonic solids.	real-world science applications.
2	Math, Tech	GeoGebra for Modeling	Create digital models using GeoGebra	Develop digital skills transferable
		Platonic Solids	software.	to other software applications.
3	Science, Math, Tech	Exploring Molecular	Visualize molecular geometry digitally.	Apply visualization techniques to
		Geometry with GeoGebra		scientific inquiry.
4	Arts, Tech	Artistic Representation of	Represent molecular symmetry	Enhance creativity and integrate
		Molecular Symmetry	artistically.	art with science and technology.
5	Engineering, Tech,	3D Printing Models of	Design accurate digital models for	Acquire hands-on engineering
	Math	Molecular Structures	printing.	skills with 3D printing technology.

Instructional Plan by Lesson

(Copy this section as many times as needed for each lesson)

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	 Welcome students and introduce the topic through a short visual presentation. Pose an opening question: "Where do we see symmetry in nature or design?" Show images of snowflakes, honeycombs, and architecture (e.g., the Parthenon). - Projector or smartboard PowerPoint with visual prompts Real-world symmetry photo slides - Identify symmetry in nature and structures Spark curiosity about geometric patterns 	 PowerPoint Projector or smartboard 	Spark curiosity, refresh knowledge

LEARNING ACTIVITIES (10	Define symmetry types: line	 Geogebra 3D or 	Build foundational geometric
, MINUTES)	 symmetry, rotational symmetry. Introduce Platonic solids: tetrahedron, cube, octahedron, dodecahedron, icosahedron. Explore how symmetry is inherent in each Platonic solid. Show animated 3D renderings and discuss face, edge, and vertex properties. Quick student sketching activity: draw 2D representations of Platonic solids. Define and describe Platonic solids Identify symmetry types in geometric figures 	other 3D geometry visualizer • Handouts with solid diagrams • Whiteboard or drawing tablets	vocabulary
3D MODELLING ACTIVITIES (10 minutes)	Guide students in designing a basic Platonic solid in a 3D modeling tool (e.g., Tinkercad).	 Tinkercad (free online 3D modeling tool) Teacher example model 	 Use symmetry knowledge in spatial modeling

	 Each student chooses one solid to build digitally. Highlight symmetry in their models—discuss how the model is balanced or regular. - Laptops or tablets 		 Develop digital fabrication skills Apply understanding of geometry to create digital 3D models
3D PRINTING ACTIVITIES (10 MINUTES)	 Demonstrate how to prepare the digital model for 3D printing (STL file export, slicer settings). Start printing a few small models (if time allows). Explain how 3D printing uses geometry and symmetry for precision manufacturing. Discuss real-world applications: engineering, medical implants, architecture. - 3D printer (e.g., Prusa, Creality) 	 Slicing software (e.g., Cura) Sample 3D printed solids - Connect geometry to real- world design and manufacturing 	 Understand basic 3D printing workflow Recognize interdisciplinary uses of geometry and symmetry
WRAP-UP & EVALUATION (X MINUTES)	Group discussion: How did symmetry help in designing the solids?		

Exit Ticket: Each student	
answers 2 questions:	
1. Name one real-world	
object that	
resembles a Platonic	
solid.	
2. How does symmetry	
improve design or	
function in	
science/tech?	
 Optional: Quick Kahoot or 	
quiz on symmetry and	
solids. - Exit ticket	
handout or online form	
 (Optional) Kahoot app for 	
quiz - Reflect on the role	
of symmetry in 3D design	
Recognize cross-	
disciplinary (STEAM)	
connections	
 Solidify conceptual 	
understanding through	
reflection and assessment	

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	 Recap from Lesson 1: Briefly review what Platonic solids are and their symmetry properties. Ask: "Why is it important to model solids digitally in STEM fields?" Introduce GeoGebra 3D Calculator as a powerful modeling tool. Show example of a completed Platonic solid in GeoGebra. - Projector or smartboard GeoGebra 3D demo file Recap slides (optional) - Connect previous knowledge of Platonic solids to digital modeling 	 Projector or smartboard GeoGebra 3D Calculator 	Understand relevance of digital tools in STEM careers
LEARNING ACTIVITIES (10 MINUTES)	 Walk students through the GeoGebra 3D interface: axes, tools, object tree, input bar. Demonstrate step-by-step how to construct a 	 Computers or tablets GeoGebra 3D Calculator (online or desktop version) 	Create and manipulate geometric structures Reinforce understanding of faces, edges, and vertices through modeling

	 tetrahedron using point and polygon tools. Emphasize how GeoGebra shows symmetry in real- time. Students replicate the process on their own screens. 		
3D MODELLING ACTIVITIES (15 minutes)	 Students choose a Platonic solid (not tetrahedron) and model it using GeoGebra. Encourage experimentation with transformations (rotation, zoom, scaling). Circulate to assist with challenges in aligning faces or creating regular polygons. Peer support activity: students review a partner's model for accuracy. - 	• GeoGebra (each student or pair)	 Practice precision and spatial reasoning Collaborate to evaluate and refine 3D constructions Apply geometry knowledge through software modeling
3D PRINTING ACTIVITIES (5 minutes)	Brief overview: exporting GeoGebra 3D models to STL format for 3D printing.	Example STL files from GeoGebra	 - Understand how digital geometry models can be used in

	 Teacher demonstrates STL export from GeoGebra (if supported) or discusses how files can be transferred to other 3D design platforms. Emphasize the interoperability of digital skills across platforms (e.g., GeoGebra → Tinkercad → Cura). - Screen recording or live demo of exporting process 	 3D printer optional (for showing use case) 	real-world design and fabrication Learn basics of file export and interoperability between software platforms
WRAP-UP & EVALUATION (10	Group reflection: "What was easy		Practice digital
MINUTES)	or challenging about building solids digitally?" • Students present their model to a small group or class. • Exit Task: 1. Screenshot of their model 2. Written description: name of solid, number of	Screenshots of student work	communication of technical ideas Build confidence in using math and tech tools collaboratively

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	Begin with a guiding question:	Ball-and-stick models	- Understand the concept
	"Why do molecules have different	(optional)	of molecular geometry
	shapes, and how does shape		Recognize the role of
	affect function?"		geometry in molecular
	Show real-life molecule		function
	models: H_2O , CH_4 , CO_2 ,		Engage curiosity around
	NH ₃ .		visualizing molecules in 3D
	Connect molecular shapes		
	to geometry (bond angles,		
	symmetry, 3D structure).		
	Introduce VSEPR Theory		
	as the scientific basis for		
	predicting molecular		
	shapes. - Projector or		
	smartboard		
	Visuals of simple molecules		
LEARNING ACTIVITIES (10	- Explain the VSEPR model:	Whiteboard or online	Classify molecules by
minutes)	electron pairs repel and define	Jamboard for group	shape and bond angles
	molecular shape.	matching	

	 Introduce key shapes: linear, trigonal planar, tetrahedral, trigonal pyramidal, bent. Show angle differences (e.g., 180°, 120°, 109.5°). Use diagrams and angle overlays to connect to geometric reasoning. Group brainstorm: Match common molecules to VSEPR shapes. 		 Use geometry to explain 3D structure Build connections between molecular and mathematical reasoning
3D MODELLING ACTIVITIES	- Demonstrate how to model	 Computers or tablets GeoGebra 3D 	 Visualize abstract
(15 MINUTES)	Calculator:	 GeoGeora 3D Angle and segment tools 	□ Apply geometry tools to
	Place atoms using pointsUse segments or vectors	in GeoGebra	 model real scientific structures Reinforce concepts through
	for bonds		digital construction and
	 Set angles to match VSEPR geometries 		manipulation
	 Students choose a 		
	molecule (e.g., CH_4 , H_2O ,		
	CO ₂) and recreate it in GeoGebra		

OSTRAVSKÁ UNIVERZITA

UNIVERSITY OF JYVÄSKYLÄ finnish instittute for educational research

	 Emphasize symmetry and accurate angle construction. Optional: use color coding (e.g., red = oxygen, white = hydrogen). 		
3D PRINTING ACTIVITIES (5 MINUTES)	 Teacher demonstrates exporting a molecule model to STL format (if applicable). Explain how 3D printing is used in science for prototyping and visualizing molecular structures. Showcase a pre-printed molecular model if available. Discuss how these models aid in chemistry, pharmacology, and materials science. - STL- ready example model 	 3D printer or printed model (optional) Demonstration video (if printing not possible) 	 Understand the intersection of science and 3D technology Recognize visualization as a tool in scientific research Connect abstract models to tangible scientific applications
WRAP-UP & EVALUATION (10 MINUTES)	- Peer review: students present their molecular models in small groups.	 Exit reflection prompt (printed or digital) 	 Reflect on learning through self-assessment and peer discussion

Co-funded by the European Union

 Reflective questions (can 	Screenshot submission	□ Reinforce understanding of
be written or discussed):	platform (Google Classroom,	molecular geometry
 What surprised you 	LMS)	Apply digital modeling to
about your	Kahoot (optional)	support scientific thinking
molecule's shape?		
2. How did geometry		Subject-Specific
help you understand		Competencies (During the
it better?		Lesson)
Exit Task: Submit		Understand VSEPR
screenshot of model + short		theory and apply it to
reflection.		real molecules.
Optional quiz or Kahoot on		Construct and visualize
molecule shapes and bond		molecular structures
angles.		using geometric
		reasoning.
		Build models that
		accurately reflect
		scientific data.
		STEAM Competencies
		(After the Lesson)
		 Apply visualization
		techniques in scientific
		inquiry.
		Use digital tools to
		represent and analyze
		scientific structures.

UNIVERSITY OF JYVÄSKYLÄ finnish institute for educational research

	٠	Strengthen cross-
		disciplinary problem-
		solving through 3D
		modeling and
		technology

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	 Begin with a thought-provoking question: "What do molecules and art have in common?" Show examples of molecular symmetry in visual form: Benzene rings, DNA double helix, snowflake symmetry Briefly explain types of symmetry: radial, reflective, rotational—relating them to molecular structures. Set the goal: Create a digital or hand-drawn art 	 Projector or smartboard Slideshow of molecular structures and symmetry in nature/art Physical models or molecular structure images 	 Recognize symmetry in molecular structures Understand the artistic potential of scientific forms Stimulate interest in combining art and science

	piece that highlights molecular symmetry.		
LEARNING ACTIVITIES (X MINUTES)	 Introduce molecular symmetry groups with simple examples (e.g., CH₄—tetrahedral, benzene—hexagonal). Explore how molecular symmetry can be represented artistically (mandalas, tessellations, digital patterns). Show examples of scientific illustrations and abstract molecular art. Group brainstorm: What artistic styles (geometric, abstract, mandala) could represent different molecules? 	 Printouts or digital slides of molecule diagrams and symmetry Chart of symmetry types in common molecules Examples of molecular- inspired art 	 Analyze the symmetry found in molecules Develop an idea for artistically expressing scientific content Prepare to blend visual arts with scientific structure
3D MODELLING ACTIVITIES	- Students choose a molecule (e.g., methane, benzene, water)	 □ - Tablets or laptops □ Canva. GeoGebra Art 	 Represent molecular symmetry through visual art
	and design a symmetry-based	Tools, or drawing software	□ Use digital tools to
	artwork using digital tools or by	Paper, colored	transform scientific concepts
	hand:	pencils/markers (for hand-	into artistic designs
	Option A: Use digital	drawing option)	
	design tools (e.g., Canva,		

	 Adobe Illustrator, or GeoGebra Art Tools) to create geometric art. Option B: Hand-drawn piece with symmetry lines, patterns, and molecular form. Emphasize the artistic representation of rotational or reflective symmetry. Allow creative freedom while ensuring accurate reference to molecular structure. 		Foster creativity through structured, science-informed expression
3D PRINTING ACTIVITIES (5 minutes)	 For digital designs: Export as PNG/SVG and prepare for display or digital gallery. Discuss optional extension: converting geometric art into 3D printable form (e.g., using Tinkercad or Blender). For hand-drawn works: Scan and digitize for sharing or printing. 	 Scanner or camera (for physical artwork) File export tools Shared Google Drive or class website (Optional) 3D printer or design software 	 Understand how art can be shared and reproduced using tech Learn to prepare digital files for visualization and display Explore future potential of combining art, tech, and fabrication

	 Students may start uploading work to a shared online gallery or class portfolio 		
WRAP-UP & EVALUATION (10 MINUTES)	 Gallery Walk: Students display work digitally or on paper and walk around to observe others' art. Reflection questions: "How did symmetry influence your artistic choices?" "How did the molecule's structure guide your design?" Peer-to-peer feedback using sticky notes or digital comments. Collect or submit artwork and short artist's statement. 	 Printed or digital reflection prompts Display board or shared digital space Sticky notes or online comment board (Padlet, Google Jamboard) 	 Reflect on scientific and artistic processes Appreciate peers' creative interpretations of molecular symmetry Practice scientific communication through artistic expression Subject-Specific Competencies (During the Lesson) Identify and interpret molecular symmetry in artistic contexts. Use scientific structure as inspiration for visual expression. Understand how symmetry appears in both art and chemistry. STEAM Competencies (After the Lesson)

JOHANNES KEPLER UNIVERSITÄT LINZ

	 Integrate visual arts with science and technology creatively. Communicate scientific ideas through artistic media. Apply design-thinking in transforming molecular forms into artistic visuals.

TIME PLAN	TEACHING & LEARNING ACTIVITIES	MATERIALS (software, hardware)	LEARNING OBJECTIVES
INTRODUCTION (5 MINUTES)	 Pose a real-world scenario: "Imagine you're designing a 3D molecular model for a biotech company. What makes a model effective?" Review prior concepts: Platonic solids, molecular symmetry, digital modeling. Introduce the goal: Design a 3D model of a molecule that is both scientifically accurate and print-ready. 	 3D printed sample models Projector or smartboard Recap chart or poster of symmetry types and molecule examples 	 Connect prior knowledge to an engineering task Understand real-world applications of molecular modeling Set clear design goals for the project

	 Show examples of professional molecular models used in labs and education. 		
LEARNING ACTIVITIES (10 MINUTES)	 Review basic molecular geometry and bond angle approximations using prior examples (e.g., methane = tetrahedral). Introduce CAD-based design criteria for printability: Correct scale and proportions Bond placement (equal length, correct angles) 	Whiteboard or drawing tablet for angle/bond diagrams	 Translate molecular geometry into measurable design choices Learn engineering design considerations for printing Prepare to create printready files
	 Structural stability for printing Explain safety and best practices for 3D modeling and printing. 		

3D MODELLING ACTIVITIES (15 minutes)	 Students choose a molecule (e.g., CH₄, NH₃, CO₂, C₆H₆) and model it using a CAD tool: Recommended: Tinkercad, Blender, or Fusion 360 for Education Guide students to: Place atoms (spheres) and bonds (cylinders or rods) Align angles to match VSEPR predictions Group/merge components into a single object Check model for overhangs and printability 	 Computers or laptops CAD software: Tinkercad, Fusion 360, or Blender Pre-designed tutorial files (optional) Bond length and angle reference chart 	 Apply math and geometry in digital modeling Use spatial reasoning to construct scientifically accurate forms Prepare a CAD model for 3D printing using engineering standards
3D PRINTING ACTIVITIES (10 MINUTES)	 Demonstrate how to export STL files and import them into slicer software (e.g., Cura, PrusaSlicer): Adjust print settings (layer height, infill, supports if needed) 	 Slicing software: Cura, PrusaSlicer 3D printer(s) (FDM recommended) STL files from student work 	 Learn the full digital-to- physical workflow Understand engineering principles in fabrication Gain practical exposure to additive manufacturing

	 Preview the slicing path 	Live print preview on	
	 Begin printing selected 	screen	
	student models (small-		
	scale or selected few)		
	Discuss printer		
	mechanics and		
	technology: FDM vs. SLA.		
	laver-by-layer deposition		
	troubleshooting common		
	errors		
	- Gallery display: students place	Certificates or stickers	\Box - Reflect on the design and
	their printed or digital models for	(optional) for STEAM	printing process
MINUTES)	class viewing	Awards	
	Deflection promot (written	Awalus	L Assess accuracy,
	Reflection prompt (whiteh		nunctionality, and aesthetics of
	or oral):		
	1. "What did you learn		
	about engineering		integration and achievement
	through this		Subject-Specific
	process?"		Competencies (During the
	2. "How did accuracy		Lesson)
	and design choices		 Design and model
	impact your final		molecular structures
	model?"		using CAD tools.
	Optional: Class vote on		
	"Most Accurate," "Most		

 Artistic," and "Most Complex" model (STEAM Awards). Collect final CAD files and reflection responses. 	 Apply geometric knowledge to real- world fabrication. Understand the steps from digital design to 3D printing. STEAM Competencies (After the Lesson) Acquire hands-on engineering skills through 3D printing. Integrate technology, math, and science to solve design challenges. Engage in iterative thinking, refining
	 Engage in iterative thinking, refining designs for practical application.

Evaluation Plan by Lesson

LES SON	EVALUATION CRITERIA	EVAL	UATION METHOD	3D	MODELING AN ASSESSME	ND PRINTING NT:
		OSTRAVSKÁ UNIVERZITA	UNIVERSITY OF JYVÄSKYLÄ FINNISH INSTITUTE FOR EDUCATIONAL RESEARCH	JOHANNES KEPLER UNIVERSITÄT LINZ	UNIVERSITÉ DU LUXEMBOURG	COMENIUS UNIVERSITY BRATISLAVA

I	Does the student demonstrate clear	Creating a detailed concept map and	Presence of clear symmetry in the model (line
	understanding of symmetry concepts and	digital models in GeoGebra.	or rotational).
	molecular geometry?		
2	Did the student accurately model molecular	Observation and peer-review of digital	Solid is positioned and proportioned
	geometry digitally?	GeoGebra models.	accurately in 3D space.
3	Can the student clearly present their models	Peer-review presentations and teacher	Accurate positioning of atoms and bonds in
	and explain the underlying symmetry	evaluation.	3D space (reflects scientific understanding).
	concepts?		
4	Can the student independently design and	Creating independent projects using	Neatness, detail, and digital or hand-rendered
	print a structurally accurate 3D model?	GeoGebra to design and print 3D models.	quality.
5	Did students effectively collaborate during	Self-assessment, group observation, and	Printed object has minimal defects, maintains
	group activities and model creation?	reflective discussions.	structure and clarity.

Additional Resources

NOTES:

ACTIVITY SHEETS TO BE LINKED:

EVALUATION MATERIALS TO BE LINKED:

REFERENCES / SUPPORTING MATERIALS TO BE LINKED:

• www.geogebra.org

•

https://espanol.libretexts.org/Quimica/Qu%C3%ADmica General/Libro%3A Chem1 (Inferior)/09%3A Uni%C3%B3n qu%C3%ADmica y estructu ra molecular/9.05%3A Geometr%C3%ADa Molecular

<u>https://www.cuemath.com/geometry/platonic-solids/</u>

• <u>https://www.dailymotion.com/video/xpgi0v</u>

